BACKGROUND

- Interleukin 31 (IL-31) signals through the heterodimeric complex consisting of IL-31 receptor alpha (IL-31Rα) and oncostatin M receptor beta (OSMRβ).
- IL-31 is produced by activated CD4+ T cells, primarily T helper cells, macrophages, and dendritic cells.
- IL-31 and its receptor complex induce pruritic skin disease, including atopic dermatitis and chronic urticaria.

OBJECTIVES

- To determine the optimal intradermal (ID) dose of recombinant human IL-31 demonstrating a consistent and robust scratching response in cynomolgus monkeys.
- To establish in vivo proof of all ranges of efficacy of KPL-716 and the correlation between pharmacokinetics (PK) and pharmacodynamics (PD) to determine an efficacious concentration range for KPL-716 in this animal model.
- To determine the response of KPL-716 SC doses against IL-31–induced pruritus.
- To compare the efficacy of KPL-716 by subcutaneous (SC) and IV administration.

RESULTS

Optimization of the model (Figure 2)

- IL-31 induced a scratching response in all animals; magnitude of response and variability tended to increase with increasing IL-31 dose.
- Weekly responses to serial IL-31 challenge remained constant over time.
- The 24 μg/mL IL-31 dose was most variable; 3 μg/mL was chosen for subsequent experiments.

Single IV dose (Figure 3)

- Single-dose KPL-716 IV attenuated IL-31–induced scratching in a dose- and time-dependent manner.
- At day 2, all doses of KPL-716 reduced scratching compared to acclimation and control.
- KPL-716 1 mg/kg IV was effective 24 hours post administration, and its effect waned by day 8.
- KPL-716 3 mg/kg IV maintained an antipruritic effect through day 10.
- KPL-716 10 mg/kg IV maintained an antipruritic effect through day 29.

PK/PD correlation (Figure 4)

- KPL-716 plasma concentrations correlated with a reduction in scratching events.
- The efficacious concentration of KPL-716 in this model was 5 to 8.5 μg/mL.
- TMOD was estimated at 210 μg/mL.
- KPL-716 exposure increased with increasing dose.

IV to SC bridge mini-PK

- 16 animals were randomized to 4 SC dose groups: 3, 6, 12, and 24 μg/kg/3 w/kg in a weight-stratified manner.
- IL-31 (derived from Escherichia coli) was administered ID on day 1.

METHODS

Optimization of the model

- 8 animals were randomized to 4 SC dose groups: 3, 6, 12, and 24 μg/kg/3 w/kg in a weight-stratified manner.
- IL-31 (derived from Escherichia coli) was administered ID on day 1.

Single-dose PK/PD

- 24 animals were assigned to 4 groups of 6 animals each (Table 1).
- KPL-716 (1, 3, and 10 mg/kg) or control was administered by IV injection on day 1.
- IL-31 was administered ID once during acclimation and on days 2, 4, 7 (after day 7), 15, 22, and 29.

Safety

- There were no adverse effects or changes in body weight related to IL-31 or KPL-716 administration over the course of the study.

CONCLUSIONS

- This model confirms target engagement and PD activity of KPL-716 in cynomolgus monkeys, which are homologous to humans for IL-31 and its receptor complex of IL-31Rα and OSMRβ.
- A single dose of KPL-716 10 mg/kg IV reduced the scratching response in primates for up to 4 weeks.
- KPL-716 protected cynomolgus monkeys from a supra-pharmacologic IL-31–challenge–induced pruritus.
- Predictive modeling with single IV PK/ID and single-dose SC PK was used to define repeated-dose SC regimen for further study.
- Experimental results confirmed model-specific dosing regimen, with protection observed using 3 mg/kg SC every 2 weeks.
- Consistent with these preclinical findings, single-dose KPL-716 IV reduced pruritus in human subjects with moderate to severe atopic dermatitis in a phase 1b clinical trial (“See Poster A560 for updated data.”)
- Reductions in pruritus were observed in the monotherapy period from week 1 through week 4 and through weeks 6–8 during concomitant use of topical corticosteroids.
- PK/ID modeling may support determination of clinical doses/dosing intervals using an efficacious concentration derived from KPL-716 clinical trials.

REFERENCES

ACKNOWLEDGMENTS

The authors acknowledge Williamson Udagavith, Steven Crox, Eugene Luo, Free Striegl, and Bruce Green of Mocean Analytics Pty Ltd, Brisbane, Australia, for data analysis and modeling.

DISCLOSURES

The work was conducted by Kiniksa Pharmaceuticals, Ltd. Medical writing assistance was provided by Pestras Advantage, LLC, or ONO Health Public, funded by Kiniksa Pharmaceuticals, Ltd.

For an e-Print, scan this QR code. Copies of this poster submitted through Quick Response (QR) Codes are for personal use only and may not be reproduced without permission from the authors of this poster.