Oncostatin M (OSM) is a member of the gp130 cytokine family, including leukemia inhibitory factor (LIF) and interleukin (IL)-31, and is involved in Th2 inflammation, epidermal integrity, and fibrosis. OSM regulates extracellular matrix remodeling by altering the network of matrix metalloproteinases (MMPs), their inhibitors (tissue inhibitors of metalloproteinases [TIMPs]), other enzymes, and chemokines. Elevated OSM protein levels and mRNA have been documented in various inflammatory diseases, including rheumatoid arthritis, asthma, pulmonary fibrosis, and atopic dermatitis. OSM interacts with 2 receptors in humans: Type 1 receptor: LIF receptor complex (LIFRα/gp130) Type 2 receptor: OSM receptor complex (OSMRβ/gp130) KPL-716 is a fully human monoclonal antibody that targets OSMRβ and simultaneously inhibits both IL-31 and OSM signaling.

OBJECTIVES

- To characterize the in vitro responses of human epidermal keratinocytes (HEK) and human dermal fibroblasts (HDF) to OSM in comparison to LIF and IL-31, using the chemokine monocyte chemoattractant protein 1 (MCP-1/CCL2), which has roles in inflammatory responses.
- To assess the ability of KPL-716 in regulating MCP-1/CCL2 responses in HEK and HDF cells.

METHODS

- To assess the production of the chemokine MCP-1/CCL2 and the intracellular signaling molecules called STATs (signal transducer and activators of transcription), cells were stimulated with human OSM, LIF, IL-31, transforming growth factor (TGF)-β, lipoprotein A (LPA), or combinations of IL-31 + OSM, IL-13 + OSM, and TGF-β + OSM for 30 minutes or 24 hours.
- To characterize synergistic responses of OSM with human IL-4 or IL-13, cells were stimulated with 0-200 ng/mL of the cytokines alone or in combination with OSM, LIF, or IL-31 for 24 hours.
- To determine antibody-mediated neutralization, cells were stimulated with 2x concentrated isotype control, KPL-716, or an anti-IL-31 receptor α (IL31Ra) antibody (final concentrations of 0.1, 0.01, 0.001, and 0.0001 µg/mL) after 1-hour pre-incubation with antibody or media alone. OSM or OSM + IL-4 were added to cells and incubated for an additional 24 hours.
- MCP-1/CCL2 levels in supernatants were determined using DuoSet EIA kits (R&D Systems, Minneapolis, MN).
- MCP-1/CCL2 and receptor chain mRNAs were measured using Nanostring technology (Seattle, WA) or quantitative real-time polymerase chain reaction (qRT-PCR).
- Experiments shown are representative of ≥3 separate experiments.
- Data are presented as mean ± standard error of the mean (SEM).
- One-way analysis of variance was used to determine statistical significance (P<0.05).

RESULTS

- OSM (50 ng/mL) significantly induced MCP-1/CCL2 protein levels and mRNA at 24 hours (Figure 1).
- In HEK cells, OSM induced activation of STAT3 and STAT1 as measured by immunoassays for phosphorylated forms (pSTAT) (Figure 2).
- Similarly, in HDF cells, OSM induced phosphorylation of STAT3 and STAT1 (Figure 3) — LIF or IL-31 minimally activated pSTAT3 and pSTAT1 but with lower signals compared with OSM — In both cell lines, OSM + IL-13 induced pSTAT1, 3, and 6 signals comparable to each cytokine alone, and TGF-β + OSM did not result in detectable differences from levels induced by OSM alone.
- Analysis of mRNA from HDF cells showed the exact same trends as HEK cells (data not shown).
- To determine antibody-mediated neutralization, cells were stimulated with 2x concentrated isotype control, KPL-716, or an anti-IL-31 receptor α (IL31Ra) antibody (final concentrations of 0.1, 0.01, 0.001, and 0.0001 µg/mL) after 1-hour pre-incubation with antibody or media alone. OSM or OSM + IL-4 were added to cells and incubated for an additional 24 hours.
- MCP-1/CCL2 levels in supernatants were determined using DuoSet EIA kits (R&D Systems, Minneapolis, MN).
- MCP-1/CCL2 and receptor chain mRNAs were measured using Nanostring technology (Seattle, WA) or quantitative real-time polymerase chain reaction (qRT-PCR).
- Experiments shown are representative of ≥3 separate experiments.
- Data are presented as mean ± standard error of the mean (SEM).
- One-way analysis of variance was used to determine statistical significance (P<0.05).

CONCLUSIONS

- OSM regulates expression of the pro-inflammatory chemokine MCP-1/CCL2 by HEK and HDF cells.
- OSM synergizes with typical Th2 cytokines (IL-4 and IL-13) to induce MCP-1/CCL2 in these cells.
- OSM induces mRNA expression of the Type II IL-4 receptor chains.
- LIF and IL-31 did not synergize with IL-4 or with IL-13 to induce MCP-1/CCL2 in HEK and HDF cells, suggesting a separate pathway for OSM signaling in these cells.
- KPL-716, at low concentrations, reduced both the OSM induction and the synergistic OSM + IL-4 induction of MCP-1/CCL2 protein production.
- The potent inhibition of OSM activity by KPL-716 suggests therapeutic potential in Th2-mediated disease distinct from KPL-716 inhibition of IL-31 signaling.

REFERENCES

DISCLOSURES

The study is being sponsored by Kiniksa Pharmaceuticals Ltd. Medical writing assistance was provided by Nicholas Askoulidis, LLC, as an Openis Health Company funded by Kiniksa Pharmaceuticals Ltd.

For an e-Print and methodology for each figure, scan the QR code. Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from the authors of this poster.

Presented at the 77th Annual Meeting of the Society for Investigative Dermatology, May 8–11, 2019, Chicago, IL

637 Osmotic M induction of Monocyte Chemoattractant Protein 1 (MCP-1) in Human Epidermal Keratinocytes Is Inhibited by Anti-Oncostatin M Receptor β Monoclonal Antibody KPL-716

Carl D. Richards, Rohan Gandhi, Fernando Botelho, Lilian Ho, John F. Paolini

1McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; 2Kiniksa Pharmaceuticals Corp., Lexington, Massachusetts, USA